Antenna Facts, Myths & Tips

- Antenna Gain
- SWR
- Transmission line loss
 Wire Antennas
 Build them to last

Hal Kennedy, N4GG SEDXC July 20, 2017

Copyright 2017, Harold E. Kennedy – All Rights Reserved

Tonight's Questions

- Since antennas don't amplify, where does "antenna gain" come from?
- When is SWR important?
- When is SWR NOT important?

Refresher – What's a dB?

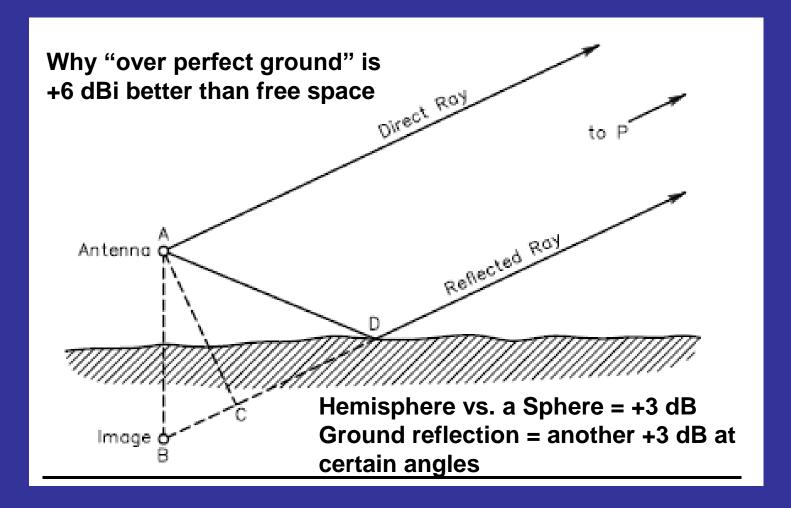
No math necessary

dBs Add <u>Results Multiply</u>

- +3 dB = times 2 (100W in 200W out)
- +6 dB = times 4 (100W in 400W out)
- +9 dB = times 8 (100W in 800W out)
- +12 dB = times 16 (100W in 1,600W out)
- $-3 \text{ dB} = \text{times } \frac{1}{2} \text{ (100W in, 50W out)}$

What is "Antenna Gain?"

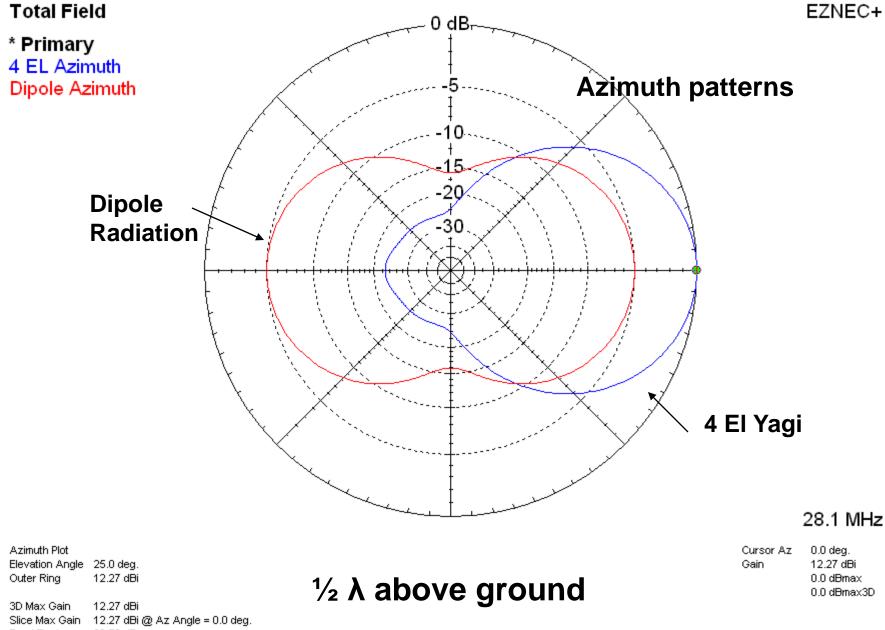
The *ratio* of: The power radiated by an antenna to the power radiated by a reference... in a *given direction*


Commonly Used References:

- An isotropic source a point in free space radiating into a sphere "dBi"
- A dipole over ground "dBd"

Some Antenna Gains

 Isotropic Radiator 0 dBi 2.1 dBi Dipole In Free Space Dipole – Over Medium Flat Earth 7.1 dBi Dipole – Over Salt Water 8.1 dBi 4 El Yagi – Medium Flat Earth 13.5 dBi • 4 El Yagi – Over Salt Water 14.0 dBi Vertical – Medium Flat Earth 4.5 dBi


Ground reflection, Free Gain!

Gaining Gain –

- So, <u>Where does</u> "Antenna Gain" come from?
 From reducing radiation in some directions and adding into some other direction
 Can be in Azimuth, Elevation or both
 - We get this from antenna design and ground reflection

WE GET MORE WATTS PER SQUARE METER BY REDUCING THE SQUARE METERS

 Silce Wax Gain
 12.27 dBl @ AZ Angle = 0.0 deg.

 Front/Back
 22.73 dB

 Beamwidth
 64.8 deg.; -3dB @ 327.6, 32.4 deg.

 Sidelobe Gain
 -10.46 dBi @ Az Angle = 180.0 deg.

 Front/Sidelobe
 22.73 dB

Antenna Gain Summary

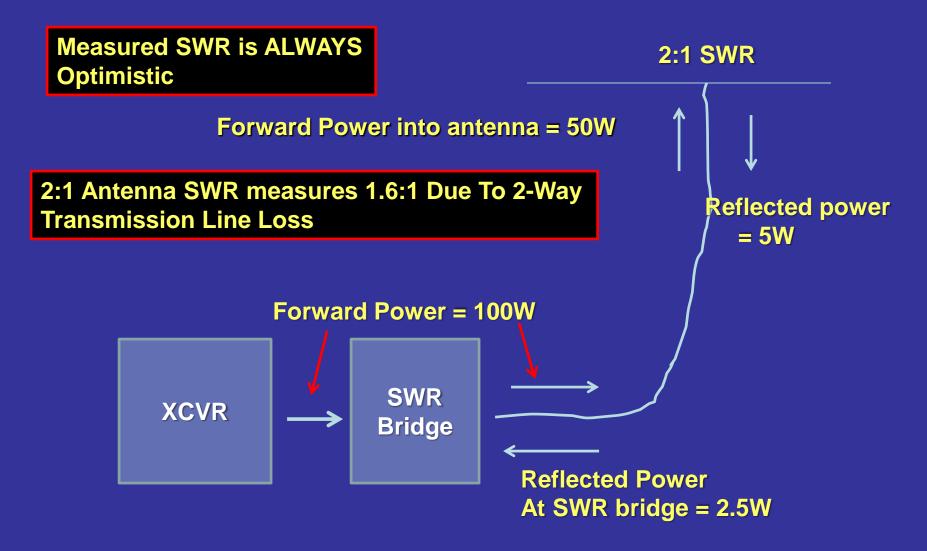
- Increased gain in some direction(s) is always at the expense of lower gain in some other direction(s)
- Ground reflection is your friend !

 Carefully pick height above ground
- Manufacturers are sneaky. They quote "dB" and don't say dBi or dBd. Be careful !

Understanding SWR

- What is it?
- How is it measured?
 - -Why measurements are always wrong (too optimistic)
- When it matters
- When it doesn't matter

What is SWR?


 It's the ratio of forward power to reflected power

 The difference between the forward and the reflected power is the power delivered to the load...

The SWR You Measure is Always Wrong

It's *always* too optimistic

(Except when it's 1:1)

Transmission line loss = - 3dB which is half power

Okay, it's always optimistic

So what?

Who Cares?

When Does SWR Matter? As Measured Day #1

- When it's Not what it Should be
 - Examples:
 - Design is for 1:1, Measures 2:1
 - Dipole should be 1.4:1, Measures 6:1, or 1:1
- When it's high enough to cause a lot of transmission line loss

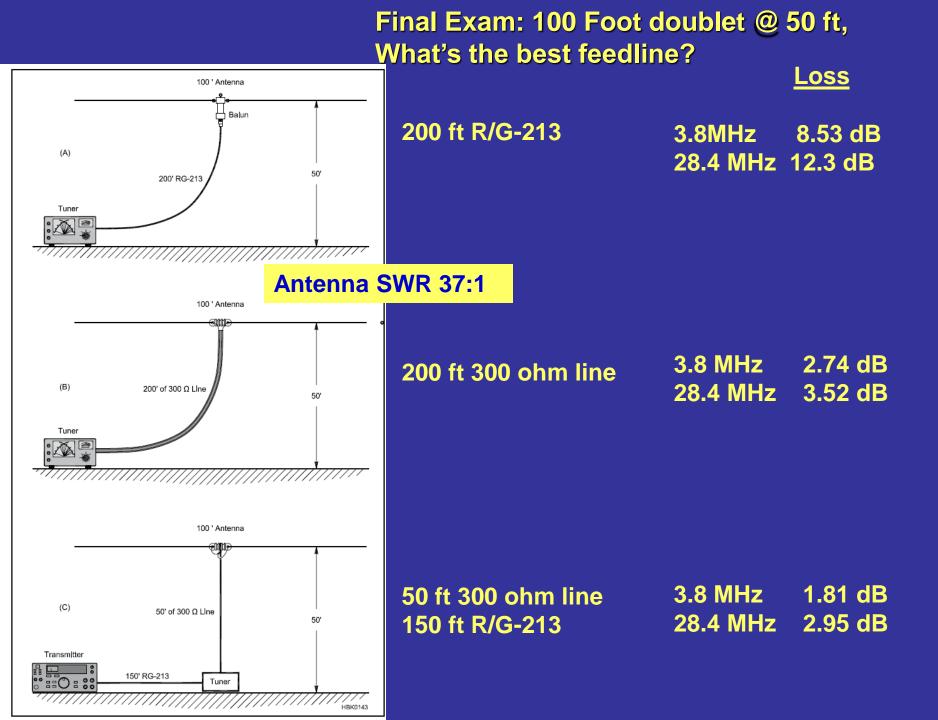
When it's too high for your rig to drive

When Does SWR Matter? As Measured Over Time

- Going up over time: Antenna Failing
- Going down over time: Coax Failing
- Changing Summer vs. Winter (Up or Down)
 Foliage coupling or touching = loss
- Changing with Rain or Snow
 - Failing transmission line, or connectors or coupling to objects (ALL BAD)
- Changes when you add another antenna
 Unwanted coupling loss and pattern changes

KEEP A STATION ENGINEERING NOTEBOOK

Transmission Line Loss (A signal Killer! – TX & RX)


Loss goes up with frequency

- R/G-8X @ 14 MHz = - 1.2 dB/100ft
@ 144 MHz = - 4.8 dB/100ft

- Loss depends on cable type
- Loss goes up with SWR, for every cable type
 - Next Chart

Loss @ 50 MHz per 100 feet

- Coax
 RG-8/X
 RG-213
 The sympletic equation of the sympletic equatis and
- Open Wire Line 0.1 dB 0.23 dB
 Ladder Line 0.5 dB 0.74 dB

SWR Myths

- Above about 2:1 SWR you can't "Get Out"
 - You can get out just fine at 20:1 with a low loss transmission line
- High SWR causes more TVI, RFI, Telephone RFI [Wrong]
- High SWR causes more radiation from the transmission line [Wrong, but more loss]
- The reflected power is absorbed by the rig [Wrong – it's re-reflected]

Wire Antenna Hints & Kinks

Lines

- Dacron is BEST
- Other synthetics may be okay UV tolerance?
- Weed Whacker Line Cheap, not bad

• Wire

- Flex-Weave Very good
- Copperweld Very strong
- Hard Drawn Copper (House Wire) Okay
- Soft Drawn Copper No Way!

Insulators

- Ceramic Good for most wire

 If sharp edges bad for Copperweld
 Life > 20 years
- Plastic Pretty good, life ~ 10 Yrs
- Molded Copolymer glass filled

 Example: "Budwig"
 Outstanding life and performance

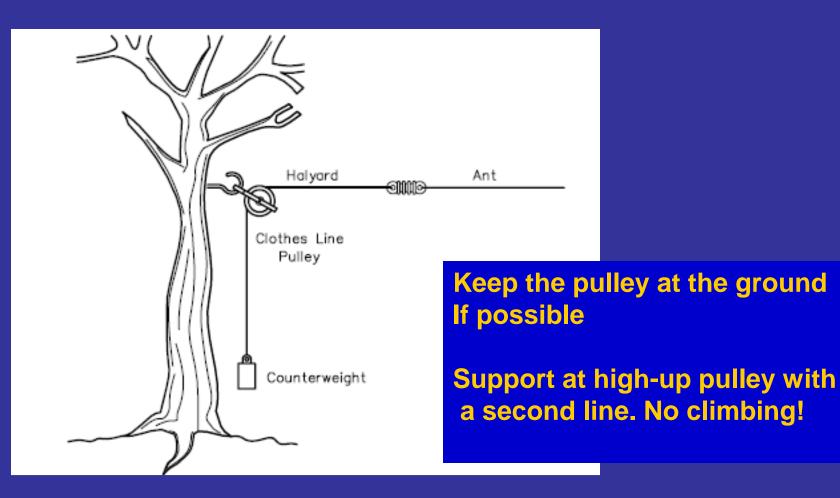
Antenna Wire and Parts - Sources

- The Wireman
- HRO (many manufacturers)
- DX Engineering, Array Solutions
- Hamfests

- Careful !!!! (Especially Copperweld)

Internet – Lot's of places

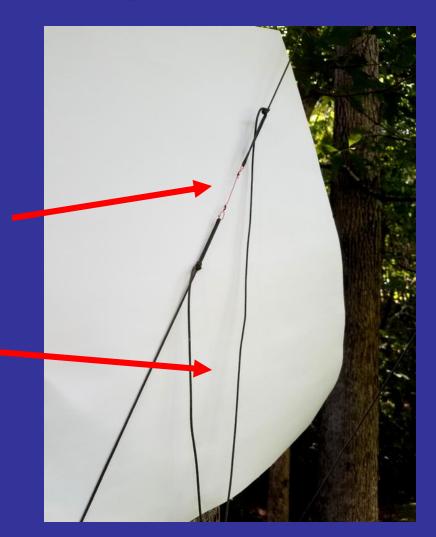
New


@ 10 years

A good Tie-Down: Clip and Eyebolt

Tolerating Tree Sway - #1

Tolerating Tree Sway - #2



Tolerating Tree Sway - #3

The Mechanical Fuse

"Fuse" of Weak Wire

Long Loop

Thanks & 73, N4GG